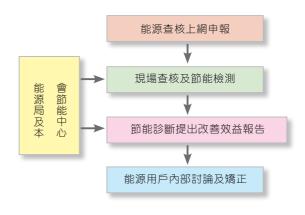


商業能源查核與節能診斷服務簡介


節約能源中心 周勤凱

一、前言

依民國93年我國能源統計資料顯示,能 源消費98%來自進□能源,其中商業部門電 力消費量216.83億度電,佔總電力消耗量的 比例高達10.52%,其耗能不但可觀且仍在持 續成長中,有鑑於此,經濟部能源局於94年 8月3日中葉局長惠青率經濟部商業節能服務 團(團長為本會林董事長志森、團員為本會 節能中心工程師及學者專家),為全球最高 建築物台北101大樓購物中心,以下簡稱101 購物中心,進行能源查核及節能診斷服務, 以宣示輔導商業部門節約能源之決心。

二、服務流程簡介

商業能源查核與節能診斷服務的流程可 大致歸納如圖1所示,首先請能源用戶(台北 101購物中心)上網站「非製造業能源查核填 報系統」申報能源使用狀況,隨後排定現場 能源查核的時間,由能源局與本會節能中心 及學者專家等,依約前往現場進行能源查核 以了解能源使用現況及申報是否確實,並就 建築外殼、電力、空調、照明及其他系統等 技術領域中之主要耗能設備分析能源使用效 率,利用各種攜帶式儀器檢測評估,進行節 能診斷,研提改善建議與執行措施,計算出 預期成效,以協助台北101購物中心達到提 高能源使用效率,降低營運成本及提升整體 競爭力的目標。

圖一 服務流程簡圖

三、台北101購物中心能源使用 現況概述

台北101購物中心為地下五樓、地上101 樓之大型鋼骨建築物,而其群樓為地下五

樓、地上八樓之大型鋼骨建築物,樓地板 面積185,806.51m²、空調使用面積102,194 m²,位於台北市信義區,於民國93年10月正 式開幕營業至今,目前為全世界最大最高之 辦公大樓及購物中心。購物中心目前由百貨 公司、美食街、名品時尚區、國際金融中 心、停車場及辦公大樓等所組成,其中辦公 大樓尚未完全使用,大樓之設計超過現有建 築法規的國際水準要求綠色建築之前瞻評 估、規劃。

經實地能源查核,台北101購物中心目 前能源使用現況及已採行之節能措施概述如 下:

(一)建築外殼:

- 1. 採用雙層中空隔熱採光玻璃。
- 2. 屋頂下天花板之空氣層,設鋁箔以加 強隔熱效果。

(二)電力系統:

- 1.以22.8kV供電,設有二電號,契約 容量1.200kW及9.400kW。
- 2. 最高尖峰需電量為11820kW,總用 電度數53,150,549kWh/年,電費 9754.6萬元/年。
- 3. 採用高效率乾式變壓器。
- 4. 採用APFR控制器控制低壓電容器投 入改善功率因數。
- 5. 採中央監控系統監控設備運轉管理。

(三)照明系統:

- 商場及廁所燈採17W省電燈管、50W 鹵素燈炮及T5電子式安定器燈具, 平均照度350-795Lux。
- 2. 賣場基礎照明採用高效率光源及電子 式安定器。

(四)空調系統:

1. 離心式冰水主機1, 200RT×2+螺旋式

- 鹵水主機1,050RT(儲冰模式750RT) ×4台。
- 2. 冰水儲槽容量: 17,000RTh,設於筏
- 3. 採用儲冰系統利用離峰電力。
- 4. 冰水系統採大溫差、變流量(VWV)系 統,採用區域泵方式因應水量變化進 行主機台數控制。
- 5. 水配管均設區域循環泵組。
- 6. 冷卻水塔風扇設有變頻控制。
- 7. 空調箱全空氣,分層分區變風量 (VAV)方式。
- 8. 全熱交換器回收冷能。

(五)其他系統:

- 1.60HP車梯1台、25HP客梯4台、30HP 客梯6台、30HP貨梯5台,其中客梯 採變頻控制。
- 2.300HP揚水泵2台,平時運轉1台, 200HP揚水泵2台,平時運轉1台,採 **恆壓變頻及液位控制。**
- 3. 裝置CO2濃度感測器控制停車場進排 風量。

四、節能診斷之改善建議

依台北101購物中心能源使用現況,能源 局及本會節能中心等學者專家,遂針對台北 101購物中心進行節能診斷,發現仍有改善 的空間,內容概述如下:

(一)電力系統:

提高功率因數:將總錶側功因由96%提高 至99%。

(二)照明系統:

- 1. 調整照明模式設計:重新規劃修改停 車場及空調機房燈具位置,使照度達 到一致,並可減少燈具數量。
- 2. 照明點燈時間管理:檢討準備時間基

本點燈回路,以人工控管方式將鹵素 **燈等照明燈具減少開啟燈數。**

(三)空調系統:

- 1. 調整主機運轉模式: 強化監控系統調 整恢復白動控制功能。
- 2. 改善管路配置:將超市及PUB之冰水 管路並聯降低區域泵耗電。
- 3. 冷卻水塔並聯運轉:冷卻水塔並聯散 熱降低冰水主機耗電。
- 4. 調整儲冰運轉模式:加裝融冰泵並以 變頻器控制融冰量。

(四)給水系統:

轉移次要負載及尖峰時間電力:利用離 峰電價時間儲存洗滌用淨水,以節省流動電 費支出。

五、節能診斷之直接效益

綜合以上節能診斷服務之改善建議歸納 如表1所示,在電力方面省能效益為26.4萬 元/年、照明方面省能效益為36.8萬元/年、 空調方面省能效益為351.8萬元/年、其他方 面間接省能效益為2.2萬元/年,每年節省能 源費用計417.2萬元/年,若除以總能源費用 9754.6萬元/年,可知節省能源費用的比例 達4.28%。

六、結語

台北101購物中心為全球最高之建築物, 其購物中心年使用電費約1億元,為國內使 用電費第六大之百貨商場,雖於起造時就以 超越當時建築法規標準設計, 日使用高效能 設備,但經由能源查核後發現仍有節能改善 潛力,所提供之節能診斷建議可節省能源費 用達4.28%,對於營運成本的降低有可觀的 貢獻,所產生的示範及推廣作用,不但有利 於落實商業部門能源查核制度,也可藉以引 領各業各界共同落實節能,以達成永續節能 健康台灣之願景。 🗭

台北101購物中心實地能源查核服務人員合影留念。由左至右分別 為台北101購物中心總經理席諾林、本會節能中心主任王文伯、能 源局組長黃正忠、台北金融大樓副總陳文光、能源局局長葉惠青、 本會董事長林志森、龍華科大電機系教授羅欽煌及北科大冷凍空 調系教授蔡尤溪(蔡詩珊攝影)

表一 台北101購物中心節能診斷直接效益統計

系統設備	節能診斷 改善建議事項	省能效益			投資費用	回收年限
		降低尖峰需量 (kW)	減少用電量 (kWh/年)	直接效益 (萬元/年)	(萬元)	(年)
電力系統	提高功率因數	3.2	28,645	26.4	0	0
照明系統	調整照明模式設計	86.8	59,568	7.7	10	1.3
	照明點燈時間管理		67,424	29.1	0	0
空調系統	調整主機運轉模式		1100,320	199.6	100	0.5
	改善管路的配置	190	110,839	20	30	1.5
	冷卻水塔並聯運轉	30.2	99,792	18	20	1.1
	調整儲冰運轉模式		631,201	114.2	100	0.8
給水系統	轉移次要負載及 尖峰時間電力			2.2		
新名能源 書	尖峰時間電力 	54 6萬元/年=4 28%				